Joint Workshop COST E55 – COST TU0601, University of Ljubljana, Slovenia, 21.- 22. September 2009

Robustness Design of Timber Structures – Secondary Structures – Purlin Systems

Philipp Dietsch Chair of Timber Structures and Building Construction Technische Universität München

General Robustness Requirements

- Structure shall be insensitive to local failure
- Progressive collapse shall be prevented
- → Possibility of verification by load case "removal of a limited part of the structure"

Structural Elements for wide-span Timber Structures

- Primary structure (e.g. trusses, pitched cambered beams)
 - Mainly determinate systems (simply supported beams, trusses)
- Secondary structure purlins
 - simply supported beams (a)
 - continuous beams (b)
 - gerber beams (c)
 - lap-jointed purlins (d)

Scheme of evaluated Structure

Structural Information of Evaluated Structure

- Roof area $\ell/w = 30.0/20.0 \text{ m}^2$, roof angle = 10°
- 6 primary beams, e = 6.0 m, assumed utilization factor $\eta \sim 0.95$.
- $g_k = 0.5 \text{ kN/m}^2$, $s_k = 0.8 \text{ kN/m}^2$, wind (suction) is neglected.
- purlins, C24 $b/h = 100/200 \text{ mm}^2$
- utilization factor (ULS) of $0.9 < \eta < 1.0 \rightarrow$ spacing *e*

Purlin system	<u>Spacing e</u>	<u>Purlin System</u>	<u>Spacing e</u>
Simply supp. beam	1.0 m	Continuous beam	1.3 m
Gerber beam	1.3 m	Lap jointed purlin	1.6 m

Load case: Removal of a limited part of the Structure

- Removal of a purlin between two supports (equivalent to the failure/rupture of one purlin)
- Removal of one support (equivalent to the failure of one main beam).
- Deterministic analysis: Comparison of load increase on remaining purlins and main beams incl. utilisation factors in the accidental load case $(\gamma_G = \gamma_Q = 1.0; \psi_{2,snow} = 0; k_{mod,acc}).$

Removal of a limited part of the Structure – simply supp. beam

	1	2	3	4	5	6
1	<u>Purlin</u>	C Removed Member	Max.	Max.	Max.	Max.
	<u>system</u> /		stress	utili-	stress	utili-
	removed	🔼 Additional failing members due to	incr-	sati-	incr-	sati-
	member	system instability	ease	on ŋ	ease	on ŋ
2			for rema	ining	for rema	ining
			purlins		main be:	ams
					(support	s)
З	<u>Simply</u>					
	<u>supp. beam</u>					
4	a) Removal				-	-
	of purlin					
		 no additional purlins failing due to system instability 				
5	b) Removal				_	_
	of supp.					

Removal of a limited part of the Structure – gerber beam

	1	2	3	4	5	6
1	<u>Purlin</u>	C Removed Member	Max.	Max.	Max.	Max.
	<u>system</u> /		stress	utili-	stress	utili-
	removed	🦳 🗛 Additional failing members due to	incr-	sati-	incr-	sati-
	member	system instability	ease	on η	ease	on η
2			for rema	ining	for rema	ining
			purlins		main be:	ams
					(support	s)

6	<u>Gerber</u>		
	<u>beam</u>		
7	a) Removal		
	of purlin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(worst case)		
8	b) Removal		
	of supp.		
	(worst case)		

Removal of a limited part of the Structure – continuous beam

	1	2	3	4	5	6
1	<u>Purlin</u>	C Removed Member	Max.	Max.	Max.	Max.
	<u>system</u> /		stress	utili-	stress	utili-
	removed	🦳 🔼 Additional failing members due to	incr-	sati-	incr-	sati-
	member	system instability	ease	onη	ease	on η
2			for rema	ining	for rema	ining
			purlins		main be:	ams
					(support	s)

9	Continuous					
	<u>beam</u>					
10	a) Removal	O1 O2 O4 O5 19% 54%	10%	50%		
	of purlin (worst case)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(sup	p.2)		
11	b) Removal		82%	83%		
	of supp.					
	(worst case)	1 2 3 4 ⁵ ⁶ (supp. 2) (supp. 2)				
		- nossible failure due to significant overloading of remaining				
		bessible randre dde to significant ovenoading of remaining				
		purlins				

Removal of a limited part of the Structure – lap jointed beam

	1	2	3	4	5	6
1	<u>Purlin</u>	C Removed Member	Max.	Max.	Max.	Max.
	<u>system</u> /		stress	utili-	stress	utili-
	removed	🕂 🗛 Additional failing members due to	incr-	sati-	incr-	sati-
	member	system instability	ease	on η	ease	on η
2			for rema	ining	for rema	ining
			purlins		main be:	ams
					(support	s)

Removal of a limited part of the Structure – Results

- Determinate Secondary Systems
 - Failure of one member will not result in substantial overloading of remaining members (depending on connection stiffness)
- Redundant Secondary Systems
 - Failure of one purlin will lead to stress increase in remaining purlins of up to 50%
 - Failure of one main member will result in an additional load on remaining main members of up to 82% (depending on purlin strength and stiffness)

Causes for Failure in Timber Structures

- numerous studies on failures in timber structures (Blaß, Frese; Frühwald et al.; Dietsch, Winter) have shown that the majority of failures were not due to local effects or statistically random occurrences, but – in the vast majority – due to systematic mistakes or global deterioration
- Reason is: structures are usually composed of repetitive elements, connected by analogical construction principles
- → mistakes during planning or construction phase, will most likely repeat itself in all identical elements (e.g. Bad Reichenhall, Siemens Arena)
- → structures containing global defects (systematic mistakes or global deterioration) will not be able to withstand a large load increase due to load distribution from one failing member, meaning they are more fragile to collapse progressively

Evaluation of failed Timber Structures - Accountabilities for Failure

UIII

Dietsch, P.; Winter, S.: "Assessment of the Structural Reliability of all wide span Timber Structures under the Responsibility of the City of Munich" 33rd IABSE Symposium Proceedings, Bangkok, Thailand, September 9-11, 2009

Causes for Failure in Timber Structures

- numerous studies on failures in timber structures (Blaß, Frese; Frühwald et al.; Dietsch, Winter) have shown that the majority of failures were not due to local effects or statistically random occurrences, but – in the vast majority – due to systematic mistakes or global deterioration
- Reason is: structures are usually composed of repetitive elements, connected by analogical construction principles
- → mistakes during planning or construction phase, will most likely repeat itself in all identical elements (e.g. Bad Reichenhall, Siemens Arena)
- → structures containing global defects (systematic mistakes or global deterioration) will not be able to withstand a large load increase due to load distribution from one failing member, meaning they are more fragile to collapse progressively

Examples – redundant secondary systems

Bad Reichenhall

Reithalle Grafling, MPA BAU/TUM

Examples – determinate secondary systems

Messe Salzburg, MPA BAU/TUM

Siemens Arena, Hansson, Larsen

Conclusion: Robustness Requirements for Timber Structures

Local effects – local failures, e.g.	Global effects, e.g.
 Local detioration of element from e.g.	 Global weakening of structural elements
local water ingress	due to systematic mistakes
 Local weakening of element from e.g.	 Global detioration of elements from e.g.
holes	wrong assumption of ambient climate
 Local overloading from e.g. local snow	 Global overloading from e.g. addition of
accumulation	green roof without structural verification
Robustness Approach:	Robustness Approach:
 Redistribution of loads to adjacent	 Limiting failure to local level by e.g.
(undamaged) elements by e.g.	determinate secondary systems with
redundant secondary system	"weak/flexible" connections
	 Compartmentalization / Segmentation

Joint Workshop COST E55 – COST TU0601, University of Ljubljana, Slovenia, 21.- 22. September 2009

Robustness Design of Timber Structures – Secondary Structures – Purlin Systems

Philipp Dietsch Chair of Timber Structures and Building Construction Technische Universität München